Reconstructing How the Spine Takes its Shape

Marina Sanaki-Matsumiya figured out how to grow human somites in a dish through a process that mirrors the tissue’s development in the embryo.

Written byNele Haelterman, PhD
| 3 min read
 somite organoid in culture
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

For as long as she can remember, Marina Sanaki-Matsumiya wanted to understand the mechanisms shaping the bones that form our skeletons. Born with a genetic skeletal disease, the developmental biologist first established an in vitro model to study the transient mouse embryonic tissues called somites that form the spine.1 She then joined Miki Ebisuya’s laboratory at the EMBL campus in Barcelona as a postdoctoral fellow to continue this work with human induced pluripotent stem cells (iPSCs).2 In a recent Nature Communications study, Sanaki-Matsumiya described how to create human somite organoids, or somitoids, that mimic the tissue’s development in vivo.

Somitogenesis is a complex developmental process that sends waves of gene expression changes at precise intervals, called the segmentation clock, through the presomitic mesoderm to bud off somites at the anterior end of the tissue. We study somitogenesis in model organisms, such as mice, chicks, and zebrafish, but, while the overall ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Nele Haelterman, PhD Headshot

    Nele earned her PhD in developmental biology from Baylor College of Medicine. During her graduate and postgraduate training, she developed gene editing technologies for characterizing human disease genes in flies and mice. Nele loves combining science communication and advocacy. She runs a blog for early career scientists and promotes open, reproducible science. In July 2021, Nele joined The Scientist’s Creative Services Team as an assistant science editor.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies