Repairing hearts

Upon activation, a novel population of resident cardiac cells forms new muscle after damage.

Written byMegan Scudellari
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Mouse heartCOURTESY OF THE BRITISH HEART FOUNDATION

A newly identified type of resident progenitor cell in the outer layer of heart tissue can be coaxed to proliferate, migrate into heart muscle, and transform into cardiomyocytes, according to new research published this week in Nature.

The research, which was conducted using mice, suggests that the human heart could be encouraged to repair itself after a heart attack by stimulating a pool of resident adult progenitor cells—a therapy that would be preferable to cell transplantation, which runs the risk of host immune rejection and limited survival of the transplanted cells.

"What this work shows is that there is an inherent capacity for the heart to repair itself," said Peter Weissberg, medical director of the British Heart Foundation, which funded the study, at a press ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies