Researchers Generate Model of Human Embryo from Human Stem Cells

The research may necessitate the formation of new ethical guidelines.

Written byAshley P. Taylor
| 2 min read
embryoid human embryonic stem cell

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: An embryoid forming two halves (green and yellow)
LABORATORY OF STEM CELL BIOLOGY AND MOLECULAR EMBRYOLOGY AT THE ROCKEFELLER UNIVERSITY

Using human embryonic stem cells (ES cells), researchers have generated models of early human embryos in the lab that are more complex than any previous lab-generated embryo model, NPR reports. They’ve also shown that the application of the protein BMP4 causes these embryo models, called embryoids, to break symmetry, or go from a round ball to a structure with front and back ends.

How the human embryo breaks symmetry is a mystery. That this could happen in the embryoids with BMP4 but without maternal factors or extra-embryonic tissues surprised the researchers, they write in their paper, published July 1 in Nature Cell Biology.

“This process of symmetry breaking is a major holy grail of development biology,” Rockefeller University stem cell researcher Ali Brivanlou, who led the research, tells NPR. “I ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH