Researchers Grow “Frankenstein Ants” to Study Epigenetics

A molecular biologist ventures into entomology to use genetically modified ants as laboratory models of behavioral epigenetics.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ANTS AND UNCLES: Members of carpenter ant (Camponotus floridanus) colonies come in a variety of shapes and sizes that fit into different castes, including the queen (top), major workers (bottom right), minor workers (next to major workers), and reproductive male and female swarmers (bottom left)COURTESY OF CHAOYANG YE AND JEURGEN LIEBIGThe cold room in biochemist Danny Reinberg’s lab at the New York University Langone School of Medicine is anything but. Illuminated for 12 hours a day and kept at 25 °C, the room is downright balmy. But entomophobes would be well advised to steer clear: this room is filled not with test tubes and petri dishes, but with ants. Lots and lots of ants.

Housed in hundreds of transparent shoebox-size plastic containers, the ants are part of an ongoing effort to establish a new model system for studying behavioral epigenetics, or what Reinberg, who is also a Howard Hughes Medical Institute (HHMI) investigator, calls “epigenetics in action.”

The idea of establishing an ant colony as a model system for epigenetics dates back nearly 12 years to a conversation Reinberg had with Shelley Berger, an epigeneticist at the University of Pennsylvania. Berger had recently returned from a family vacation in Costa Rica, where she spent time watching leaf-cutter ants in action. Ant colonies are highly homogeneous, genetically speaking. Yet their members vary dramatically in shape, size, and behavior. “In some cases the worker and queen are absolutely identical genetically, and ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jeffrey M. Perkel

    This person does not yet have a bio.

Published In

October 2016

30th Anniversary Issue

How life science research has changed since 1986

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide