Scientists Reverse Engineer mRNA Sequence of Moderna Vaccine

Stanford University researchers determined the code from spare drops in discarded vials of the COVID-19 vaccine and published it on GitHub.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: © ISTOCK.COM, INSJOY

Leftover drops in vials of Moderna’s COVID-19 vaccine allowed a group of researchers from Stanford University to determine the sequence of the mRNA for SARS-CoV-2’s spike protein that is used in the immunization, Motherboard reported March 29. The sequence has been posted on the open-access website GitHub.

“Sharing of sequence information for broadly used therapeutics has substantial benefit in design of improved clinical tools and precise diagnostics,” the authors write in their post. They explain that knowing the vaccine’s sequence will allow diagnostic labs to more easily differentiate between RNA from the vaccine versus that from an actual viral infection.

“As the vaccine has been rolling out, these sequences have begun to show up in many different investigational and diagnostic studies,” the researchers tell Motherboard by email. “Knowing these sequences and having the ability to differentiate them from other RNAs in analyzing future biomedical data sets ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Lisa Winter

    Lisa Winter became social media editor for The Scientist in 2017. In addition to her duties on social media platforms, she also pens obituaries for the website. She graduated from Arizona State University, where she studied genetics, cell, and developmental biology.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Stem Cell Strategies for Skin Repair

Stem Cell Strategies for Skin Repair

iStock: Ifongdesign

The Advent of Automated and AI-Driven Benchwork

sampled
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo

Products

dispensette-s-group

BRAND® Dispensette® S Bottle Top Dispensers for Precise and Safe Reagent Dispensing

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo