Sea Anemones Illuminate the Evolution of Embryo Development

A study of a simple marine animal suggests that the common ancestor of cnidarians and bilaterians may have had three germ layers instead of two.

abby olena
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Polyps of the starlet sea anemone Nematostella vectensis. Their single body opening (mouth) is surrounded by extended tentacles. The cells producing digestive enzymes and insulin-like peptides are part of the folds running internally along animal.PATRICK STEINMETZHumans and most other animals that belong to the phylum Bilateria have embryos that form three layers of cells called germ layers—ectoderm outside, endoderm inside, and mesoderm in between—that give rise to the organism’s organization. Embryos from the phlyum Cnidaria, which includes jellyfish and sea anemones, only have two layers of cells, which scientists have correspondingly classified into two germ layers­—ectoderm on the outside and on the inside, mesendoderm, which produces cell types that in bilaterians come from either the endoderm or the mesoderm.

A study published today (September 11) in Nature Ecology & Evolution suggests that instead of two distinct germ layers, cnidarians may indeed have three. The authors show that the mesendoderm of the sea anemone (Nematostella vectensis) resembles bilaterian mesoderm, based on cell type specification and gene expression. And Nematostella derives gut-like cells from a portion of the embryonic layer that has been previously characterized as ectoderm, but expresses genes orthologous to those in bilaterian endoderm.

Nematostella embryos’ two cell layers arise during gastrulation by the movement of a group of cells into the interior of the animal to form a pouch with one open end. The two layers created by this invagination were historically described as endoderm and ectoderm. More recent work suggested that what ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • abby olena

    Abby Olena, PhD

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo