Sea Anemones Illuminate the Evolution of Embryo Development

A study of a simple marine animal suggests that the common ancestor of cnidarians and bilaterians may have had three germ layers instead of two.

Written byAbby Olena, PhD
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Polyps of the starlet sea anemone Nematostella vectensis. Their single body opening (mouth) is surrounded by extended tentacles. The cells producing digestive enzymes and insulin-like peptides are part of the folds running internally along animal.PATRICK STEINMETZHumans and most other animals that belong to the phylum Bilateria have embryos that form three layers of cells called germ layers—ectoderm outside, endoderm inside, and mesoderm in between—that give rise to the organism’s organization. Embryos from the phlyum Cnidaria, which includes jellyfish and sea anemones, only have two layers of cells, which scientists have correspondingly classified into two germ layers­—ectoderm on the outside and on the inside, mesendoderm, which produces cell types that in bilaterians come from either the endoderm or the mesoderm.

A study published today (September 11) in Nature Ecology & Evolution suggests that instead of two distinct germ layers, cnidarians may indeed have three. The authors show that the mesendoderm of the sea anemone (Nematostella vectensis) resembles bilaterian mesoderm, based on cell type specification and gene expression. And Nematostella derives gut-like cells from a portion of the embryonic layer that has been previously characterized as ectoderm, but expresses genes orthologous to those in bilaterian endoderm.

Nematostella embryos’ two cell layers arise during gastrulation by the movement of a group of cells into the interior of the animal to form a pouch with one open end. The two layers created by this invagination were historically described as endoderm and ectoderm. More recent work suggested that what ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control