Sea Levels May Rise Faster than Previously Thought: Study

A new analysis finds that ice melt in Greenland and Antarctica could lead to increases of 2 meters by the end of the century if carbon emissions are not reduced.

Written byCatherine Offord
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: © ISTOCK.COM, ANYABERKUT

Global sea levels could rise twice as fast as previously thought, according to a study published yesterday (May 20) in PNAS. Experts surveyed by the study authors estimate that, if emissions continue on their current trajectory, accelerated ice melt in Greenland and Antarctica could contribute to rises of 2 meters and lead to the displacement of nearly 200 million of people.

“To put this into perspective, the Syrian refugee crisis resulted in about a million refugees coming into Europe,” study coauthor Jonathan Bamber of the University of Bristol tells BBC News. “That is about 200 times smaller than the number of people who would be displaced in a 2m sea-level rise.”

Previous estimates for sea-level rises come from a 2013 report by the Intergovernmental Panel on Climate Change (IPCC). Using computer models of future warming, that assessment predicted that if emissions are not reduced, the planet ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH