Seasonal Genes

Gene expression varies not only during the day but also throughout the year, a study shows.

Written byAshley P. Taylor
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

NATURE COMMUNICATIONS, CASTRO DOPICO ET AL.Gene expression in human immune cells varies by season, according to a study published today (May 12) in Nature Communications—the first of its kind to examine patterns in gene-expression variation throughout the year.

The results indicate “sort of a molecular signature of the seasons in humans,” said Ghislain Breton, who studies circadian rhythms at the University of Texas at Houston, but was not involved in the work.

In immune cells of the blood, the expression of genes that promote inflammation tends to rise in the winter and dip in the summer, the team—led by investigators at the University of Cambridge—found. The researchers hypothesized that these and other seasonal gene-expression patterns may help explain the seasonality of diseases, from infectious maladies like the flu to chronic conditions such as heart disease.

“We now know that all immune cell types have their own circadian clocks, as is the case for virtually all other organs and cell types in the body,” ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH