Secrets of Re-sprouting Heads

Researchers identify a signaling pathway that can control how well flatworms regenerate the front parts of their bodies.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Procotyla fluviatilisJAMES SIKESTweaking a signaling pathway in flatworms that have partially lost the ability to regrow their heads can reactivate their regeneration abilities, according to a trio of papers published today (July 24) in Nature. The papers, authored by three independent teams, show that manipulation of the Wnt/β-catenin signaling pathway—known for its role in body patterning in diverse animals—is key to triggering regeneration.

“I think the finding . . . is very important to our understanding of regeneration in particular and of the evolution of this phenomenon in general,” Alejandro Sánchez Alvarado of the Howard Hughes Medical Institute and the Stowers Institute for Medical Research, who was not involved in the research, told The Scientist in an email.

The two most extensively studied species of flatworm, Dugesia japonica and Schmidtea mediterranea, are highly regenerative, regrowing heads and tails from stem cells no matter where they are cut. “You can cut them in 200 pieces, then you have 200 worms,” said James Sikes, a coauthor of one of the papers and an evolutionary developmental biologist at the University of San Francisco.

But other flatworms seemed only partially regenerative, able ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Kate Yandell

    This person does not yet have a bio.
Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Artificial Inc. Logo

Artificial Inc. proof-of-concept data demonstrates platform capabilities with NVIDIA’s BioNeMo

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

Scientist holding a blood sample tube labeled Mycoplasma test in front of many other tubes containing patient samples

Accelerating Mycoplasma Testing for Targeted Therapy Development