Seeded by Weeds

More than 50 years after cross-contamination of cultured cell lines was recognized, the problem continues to plague the scientific community.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

CULTURE CONFUSION: HeLa cells (pictured here) are a common contaminant of cell lines.NATIONAL INSTITUTES OF HEALTH/WIKIPEDIA

In the early days of cell culture, researchers often struggled to get their cell lines to survive for long periods of time. At first, some investigators blamed inappropriate culture conditions and kept tweaking the recipe, hoping to get it right. HeLa cells, first cultured in 1951 from cervical cancer tissue, were cloned in 1955 and became the first human cell line capable of permanent growth in culture. Thereafter, dozens of other permanent human cell lines were reported in the literature, suggesting that they were relatively easy to establish. However, in the 1960s, Leonard Hayflick and his colleagues published a landmark series of papers explaining the initial difficulties in getting cells to grow indefinitely: normal human fibroblasts grown in culture divide a finite number of times.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • K. John Morrow Jr.

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours