Seeing Double

Combining two imaging techniques integrates molecular specificity with nanometer-scale resolution.

| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

© THOMAS DEERINCK, NCMIR/SCIENCE SOURCEFluorescent dyes and genetic tags have revolutionized researchers’ ability to determine the location of specific proteins in space and time using light microscopy (LM). With the advent of super-resolution fluorescence LM techniques, much more precise location of proteins within a cell is possible, but those techniques do not provide information about the ultrastructural cellular context of biomolecules. Electron microscopy (EM) is an unbeatable tool for providing structural data at the nanometer scale, but the field of view in EM is very narrow and the molecular scenery is highly crowded, making it tedious and time-consuming to locate specific structures and cellular events, especially if they are rare. Moreover, EM can only provide a static snapshot of the sample because cells and tissues must be fixed prior to imaging.

Recently, researchers have developed methods that allow both light- and electron-microscopic examination of the same specimen, an approach known as correlated light and electron microscopy, or CLEM. LM imaging (which is typically performed before EM because the electron beam usually wipes out fluorescent signals) provides an overview of the sample, enabling researchers to identify structures and regions of interest for investigation with EM.

One of the primary challenges in CLEM, however, is locating the same area that was imaged using LM, says Chris Arthur, a senior research scientist at FEI Company in Hillsboro, Oregon, which manufacturers several different tools for CLEM. Even as researchers manage to home in on the region of interest, it can be difficult to accurately overlay the two types of images, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD
The Scientist Placeholder Image

Streamlining Microbial Quality Control Testing

MicroQuant™ by ATCC logo

Products

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies

waters-logo

How Alderley Analytical are Delivering eXtreme Robustness in Bioanalysis