Self-Harm for Self-Defense

To protect themselves during malaria infections, mice can kill their own healthy red blood cells, cutting off the parasite’s primary resource.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

FLICKR CREATIVE COMMONS, AUSSIEGALL

Mice infected with the malaria parasite can purposely damage their own healthy red blood cells to defend themselves against the invader, which thrives by infecting new blood cells. This phenomenon, once thought to be an unintended side effect of the immune system response to infection, appears instead to be an effective measure the reduce the virulence of the parasite, according to a study published yesterday (June 20) in Journal of the Royal Society Interface.

“The immune system is really judiciously killing red blood cells at exactly the moment where it will maximally slow down the parasite’s growth rate,” said evolutionary ecologist and co-author Jessica Metcalf of Oxford University. “So it’s self-harm for self-defense.”

Malaria parasites multiply within red blood cells until they burst, releasing new ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Hayley Dunning

    This person does not yet have a bio.
Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Conceptual 3D image of DNA on a blue background.

Understanding the Nuts and Bolts of qPCR Assay Controls 

Bio-Rad
Takara Bio

Takara Bio USA Holdings, Inc. announces the acquisition of Curio Bioscience, adding spatial biology to its broad portfolio of single-cell omics solutions

Sapio Sciences

Sapio Sciences Announces Enhanced Capabilities for Chemistry, Immunogenicity, GMP and Molecular Biology

Biotium Logo

Biotium Unveils the Most Sensitive Stains for DNA or RNA with New EMBER™ Ultra Agarose Gel Kits