Singularly Alluring

Microfluidic tools and techniques for investigating cells, one by one

| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

SINGLE-ROOM OCCUPANCY: This 48-well microfluidic chip for single-cell genomics consists of a layer of “control” lines (red) that actuate “gates” in the flow channels (blue and red) to position cells in individual chambers for lysis and DNA amplification (green).COURTESY OF BRIAN HEDLUNDMicrofluidics, the science of moving and manipulating nanoliter or microliter volumes through micron-scale channels, is playing an increasingly outsize role in the life sciences. For some researchers, microfluidics holds the key to low-cost diagnostics. Others use the technology to evaluate the quality of nucleic acid preparations or to drive targeted DNA sequencing. But for an ever-larger pool of researchers, microfluidics offers a way to reduce biology to a fundamental unit, the cell.

“The scale is the right match,” explains David Weitz, professor of physics and applied physics at Harvard University. “Microfluidic chips are meant to manipulate cubic microns of fluid, and a cell is some number of cubic microns in size.”

Some researchers use those chips to study cell behavior; others are interested in the macromolecular composition of the cells themselves. In either case, the technology is relatively straightforward. Yet many nonexperts can be intimidated by microfluidics, says Weitz, and some new equipment may well be required. For many, it’s probably easier to collaborate with an expert.

Still, if you’re game to try, the advantages of microfluidics could well outweigh the growing pains and expense. The Scientist asked four researchers about their strategies for taking biology to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer