Singularly Alluring

Microfluidic tools and techniques for investigating cells, one by one

Written byJeffrey M. Perkel
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

SINGLE-ROOM OCCUPANCY: This 48-well microfluidic chip for single-cell genomics consists of a layer of “control” lines (red) that actuate “gates” in the flow channels (blue and red) to position cells in individual chambers for lysis and DNA amplification (green).COURTESY OF BRIAN HEDLUNDMicrofluidics, the science of moving and manipulating nanoliter or microliter volumes through micron-scale channels, is playing an increasingly outsize role in the life sciences. For some researchers, microfluidics holds the key to low-cost diagnostics. Others use the technology to evaluate the quality of nucleic acid preparations or to drive targeted DNA sequencing. But for an ever-larger pool of researchers, microfluidics offers a way to reduce biology to a fundamental unit, the cell.

“The scale is the right match,” explains David Weitz, professor of physics and applied physics at Harvard University. “Microfluidic chips are meant to manipulate cubic microns of fluid, and a cell is some number of cubic microns in size.”

Some researchers use those chips to study cell behavior; others are interested in the macromolecular composition of the cells themselves. In either case, the technology is relatively straightforward. Yet many nonexperts can be intimidated by microfluidics, says Weitz, and some new equipment may well be required. For many, it’s probably easier to collaborate with an expert.

Still, if you’re game to try, the advantages of microfluidics could well outweigh the growing pains and expense. The Scientist asked four researchers about their strategies for taking biology to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH