Sleep Protection

Inducing certain brain patterns extends non-REM sleep in mice.

Written byKerry Grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

HIT THE SNOOZE BUTTON: Researchers stimulate deeper sleep by optogenetically triggering certain patterns of brain activity in mice.© VALERIE LOISELEUX/ISTOCKPHOTO.COM

The paper A. Kim et al., “Optogenetically induced sleep spindle rhythms alter sleep architectures in mice,” PNAS, 109:20673-78, 2012. The finding Sleep spindles are EEG-detected oscillations in brain activity, lasting from 0.5 to 3 seconds, that occur during non-REM sleep. Earlier work had proposed that neurons generating sleep-spindle patterns might help maintain sleep, as studies tied increased sleep-spindle frequency to hypersomnia, or extended periods of sleep. But these were only correlations. Now, Hee-Sup Shin of the University of Science and Technology in Daejeon, Korea, and colleagues have shown for the first time that sleep spindles in fact are responsible for maintaining longer periods of non-REM sleep. The technique Shin’s group used optogenetics—a technique that activates selected neurons via a genetically inserted light receptor called channelrhodopsin2—to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies