Slime Mold Smarty Pants

A form of spatial memory helps a brainless slime mold navigate complex environments, hinting at the possible origins of memory in higher organisms.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

The yellow slime mold Physarum polycephalum exploring an agar plate. Courtesy of Audrey DussutourThe slime mold Physarum polycephalum remembers where it’s been, allowing the single-cell amoeboid to more efficiently navigate its environment. The key, according to a study published yesterday (October 8) in Proceedings of the National Academy of Sciences, a kind of externalized spatial memory system, based on the trail of translucent slime it leaves in its wake, that allows the organism to recognize and avoid already-explored areas.

“It doesn’t have a brain. It doesn’t even have a neuron. It has to do everything with just one cell,” Audrey Dussutour, a collective behavior specialist at France’s National Center for Scientific Research, told Wired Science. “The easiest way to have a memory of where you’ve been is to leave something behind.”

When Dussutour and her colleagues noticed that foraging P. polycephalum do not often cross earlier paths, they decided to put the slime mold to the test. The researchers presented P. polycephalum with an agarose-floored Y-maze with food at the end of both arms, but in one of the arms, they covered the agar with extracellular slime; 39 of 40 went down the arm with blank agar, avoiding the slime. When both arms contained ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo
Sapio Sciences logo

Sapio Sciences Introduces Biorepository Management Solution