Smart Skin Enables Magnetoreception

Researchers develop a wearable technology that can detect magnetic fields and translate the signal into a visual display—a first step toward equipping humans with an entirely new sense.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ANDRZEJ KRAUZEThinner than plastic wrap and lighter than a feather, electronic skin, also known as smart skin or imperceptible electronics, detects information about the internal and external environments. Such technology has been in development for wearable medical instruments, health monitors, prosthetics with sensory feedback, and even robotic skin. Now, scientists are expanding electronic skin into the realm of the once-impossible: endowing humans with a sixth sense.

“There have been many kinds of physiological and/or electrophysiological sensors for wearable electronics,” Dae-Hyeong Kim of Seoul National University told The Scientist in an email. In 2014, for example, Kim and his colleagues developed a smart prosthetic skin that could sense pressure, temperature, and humidity and was equipped with stretchable electrode arrays for nerve stimulation (Nat Commun, 5:5747). But while sensors exist that can duplicate or enhance human senses, no one has yet developed a smart skin to detect a new type of stimuli. No one, that is, until Denys Makarov of the Helmholtz-Zentrum Dresden-Rossendorf in Germany, set his sights on sensing magnetic fields, which people have no natural ability to detect.

“It would truly be a sixth-sense technology,” says Makarov. “Artificial magnetoreception is something ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours