Soil Harbors Antibiotic Resistance

Identical resistance genes in soil and clinical bacteria hint at dangerous genetic arms trade that is aggravating the antibiotic-resistance crisis.

Written byEd Yong
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Harmless bacteria from American soils carry the same antibiotic-resistance genes as many pathogenic microbes around the world, suggesting there is a secret arms trade running between the bacteria in our soils and those that ravage our bodies with disease. Such a trade has long been suspected, but Gautam Dantas from the Washington University School of Medicine in St. Louis has now found the clearest evidence for it. “The genes are 100 percent identical,” he said.

The research, published today (August 30) in Science, confirms that soil bacteria are an important reservoir of resistance genes, serving as an ancient stockpiles of shields and armor that disease-causing microbes can tap into. This may have contributed to the recent rise in multidrug-resistant microbes. “[The movement of] resistance between environment and clinic becomes a certainty rather that a hypothetical threat,” said Gerry Wright, a microbiologist at McMaster University, who was not involved in the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH