Some Assembly Required

Researchers construct nanoscale DNA cages that could eventually be used to deliver drugs to target tissues.

Written byTracy Vence
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

WIKIMEDIA, CHRISTOPH BOCKChemists from McGill University in Montreal, Canada, have devised a technique for assembling nanoscale structures—or “cages”—that encapsulate small molecules, according to a report published in Nature Chemistry this week (September 1). The researchers said that these cages, which release their contents upon binding complementary DNA, could be useful for drug-delivery applications down the line.

The authors also noted that these DNA cages could be handy research tools, as they con?ne their contents in hydrophobic environments composed of small, lipid-like chains. They added that the assembly scheme can be used to form a variety of structures. With eight potential biding sites on each cage, as many as 26 different isomers could be developed.

“This research is important for drug delivery, but also for fundamental structural biology and nanotechnology,” lead author Hanadi Sleiman said in a press release. “It opens up a range of new possibilities for designing DNA-based nanomaterials.”

Study coauthor Thomas Edwardson added that these cages can be “easily tuned” to suit a variety of purposes. “In a future application, one can imagine a DNA cube that carries drug ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD

Products

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies