Speeding Up Stem Cell Growth

Scientists fiddle with formulas to boost the growth of their stem cell cultures.

| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

Cell biologist Alicia Lyle hoped to use mouse mesenchymal stem cells to deliver molecular cargos to tissues, and she also wanted to study how MSCs from different lines of knockout mice assemble into blood vessels. But Lyle’s group, at Emory University in Atlanta, soon hit a snag: growing the cells took ages.

“Even with the tenderest of care, it was taking somewhere close to eight to twelve weeks to even reach a point . . . to passage them,” recalls Lyle, referring to the point when cells crowd a dish and need to be split between multiple culture flasks. And by passage seven or eight, Lyle’s cells began to senesce, losing their ability to either maintain pluripotency or differentiate.

While mouse MSCs are particularly difficult to work with, Lyle’s complaints echo those heard across the stem cell field. To both understand stem cells and use them to treat diseases, efficiency ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Amber Dance

    Amber Dance is an award-winning freelance science journalist based in Southern California. After earning a doctorate in biology, she re-trained in journalism as a way to engage her broad interest in science and share her enthusiasm with readers. She mainly writes about life sciences, but enjoys getting out of her comfort zone on occasion.

Published In

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide