Stem Cells Hit Reverse

A transcription factor can make adult stem cells behave like fetal stem cells.

Written byTia Ghose
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Electron micorograph of red blood cell, platelet, and T-lymphocyteWIKIMEDIA COMMONS, NATIONAL CANCER INSTITUTE

A transcription factor that is usually only expressed in fetal stem cells can make adult blood stem cells act like their younger counterparts, according to a new study published today (July 31) in Genes and Development. The findings hold promise for treating leukemia by converting cancerous adult stem cells, which are driven by pro-cancer growth signals, into fetal stem cells, which don’t respond to those signals.

“This is a fascinating paper that turns back the clock on hematopoietic stem cells,” said George Daley, a stem cell biologist at Children’s Hospital in Boston, who was not involved in the study. “This is highly significant for understanding how aged blood cells might be rejuvenated and adds to a growing literature that teaches us that we can alter ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH