Stem Cells Induced for Conservation

Researchers generate pluripotent stem cells from two endangered species in hopes of learning more about the near-extinct animals.

kerry grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Using frozen cells stored at the San Diego Zoo, researchers have made induced pluripotent stem cells (iPSCs) from two species teetering on the brink of extinction: an African primate called a drill and the northern white rhinoceros. The study, published today (September 4) in Nature Methods, is the first to tap into the potential of iPSCs for the conservation of endangered species.

“It is one means of capturing a genome in a way that is reproducible and will allow you to study tissue development maybe long after the animal is gone,” said George Daley, a professor at Children's Hospital Boston and Harvard Medical School, who was not part of this study. “Whether or not this can assist in reproduction is somewhat more speculative, and that may or may not ever pan out.”

Induced pluripotent stem cells are created by reprogramming somatic cells. In this case, researchers started with frozen fibroblasts, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio