Stressing and FRETing

Two labs have produced FRET-based systems for real-time analysis of a plant stress hormone.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

FRETing: When abscisic acid (ABA) is absent, resonance energy transfer between fluorescent dyes (blue and green) of the reporter molecule results in a green signal. Upon ABA binding, the conformation of a covalently linked, ABA-regulated phosphatase changes, the energy transfer stops, and the reporter glows blue.GEORGE RETSECK

RESPONDING TO STRESS: Schroeder’s group exposed Arabidopsis plants to low-humidity conditions and found that ABA levels rose in guard cells over the course of 15 minutes, as indicated by the reporter’s increase in blue fluorescence (inset).LEAF INSET: ELIFE, DOI:10:01739, 2014 Climate change threatens to bring higher temperatures and more extreme weather conditions, including severe droughts. Researchers therefore want to understand how plants tolerate such stress, with the hope of achieving drought-defying crops. A plant’s natural response to water scarcity is to produce the stress hormone abscisic acid (ABA), which activates an array of water-conserving mechanisms, such as closing the leaf pores, or stomata, to reduce evaporation. To date, however, studies of ABA activity have largely relied on post facto or indirect observations and measurements.

Now, the development of two fluorescence resonance energy transfer (FRET)–based sensors means “you can actually look at the dynamics of the hormone in live plants,” says Jeff Leung of France’s National Center for Scientific Research who was not part of the work.

The new systems, ABACUS and ABAleon, devised independently by Wolf Frommer of the Carnegie Institution for Science in Stanford, California, and Julian Schroeder of the University of California, San Diego, work similarly. Both use a fluorescently tagged ABA-binding protein whose conformation changes when it hooks up with ABA. As a consequence, explains Leung, “they fluoresce at different wavelengths ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH