Stressing and FRETing

Two labs have produced FRET-based systems for real-time analysis of a plant stress hormone.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

FRETing: When abscisic acid (ABA) is absent, resonance energy transfer between fluorescent dyes (blue and green) of the reporter molecule results in a green signal. Upon ABA binding, the conformation of a covalently linked, ABA-regulated phosphatase changes, the energy transfer stops, and the reporter glows blue.GEORGE RETSECK

RESPONDING TO STRESS: Schroeder’s group exposed Arabidopsis plants to low-humidity conditions and found that ABA levels rose in guard cells over the course of 15 minutes, as indicated by the reporter’s increase in blue fluorescence (inset).LEAF INSET: ELIFE, DOI:10:01739, 2014 Climate change threatens to bring higher temperatures and more extreme weather conditions, including severe droughts. Researchers therefore want to understand how plants tolerate such stress, with the hope of achieving drought-defying crops. A plant’s natural response to water scarcity is to produce the stress hormone abscisic acid (ABA), which activates an array of water-conserving mechanisms, such as closing the leaf pores, or stomata, to reduce evaporation. To date, however, studies of ABA activity have largely relied on post facto or indirect observations and measurements.

Now, the development of two fluorescence resonance energy transfer (FRET)–based sensors means “you can actually look at the dynamics of the hormone in live plants,” says Jeff Leung of France’s National Center for Scientific Research who was not part of the work.

The new systems, ABACUS and ABAleon, devised independently by Wolf Frommer of the Carnegie Institution for Science in Stanford, California, and Julian Schroeder of the University of California, San Diego, work similarly. Both use a fluorescently tagged ABA-binding protein whose conformation changes when it hooks up with ABA. As a consequence, explains Leung, “they fluoresce at different wavelengths ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research