Study: MicroRNA, Retroviruses Coordinate to Influence Pluripotency

Removing a specific miRNA from stem cells may induce the expression of endogenous retroviruses that enable the cells to form extra-embryonic lineages.

Written byJoshua A. Krisch
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Human embryonic stem cellsWIKIMEDIA, NISSIM BENVENITSKYPluripotent stem cells are capable of generating all embryonic cell lineages but, until now, scientists could seldom manipulate induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) to generate extra-embryonic cell types, such as placental cells. A study published this week (January 12) in Science has now shown that removing one particular microRNA—miR-34a—from a stem cell can kick off a molecular pathway that induces endogenous retroviruses and, at the same time, enables iPSCs and ESCs to consistently form extra-embryonic cells in a dish.

The results suggest that a particular class of noncoding RNA works in concert with the latent viral elements of the genome work to limit stem cell potential, and that removing a key miRNA can lift this limitation—at least in vitro.

“At first we were a bit dubious about our findings,” said coauthor Lin He, an associate professor of developmental biology at the University of California, Berkeley. “In this experiment, we definitively show that the progeny [of embryonic stem cells] can go to both embryonic and extra-embryonic lineages. That was a pretty incredible moment for us, because we actually convinced ourselves that this finding was real.”

Although stem cells can give rise to virtually any cell type inside the embryo, they have limited potential to give ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies