Supporting the “Good” Gut Microbes

During systemic infection, mice kick-start the production of a specific sugar to feed and protect the beneficial bacteria in their guts while fighting pathogenic strains.

head shot of blond woman wearing glasses
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Mouse small intestine villi stained for fucose-attached proteins. JOSEPH PICKARD, UNIVERSITY OF CHICAGOMice with systemic bacterial infections induce a pathway that makes a sugar called fucose readily available to feed the beneficial microbiota in the small intestine, according to a study published today (October 1) in Nature. This newly uncovered protective mechanism helps maintain the “good” bacterial populations in the gut while the animal is sick—and appears to protect against further infections.

“The most interesting aspect of this study is that the host is responding to a systemic microbial infection signal by altering glycans on intestinal epithelial cells, and this in turn increases host fitness in a microbiota-dependent manner,” said Laurie Comstock, a microbiologist at the Brigham and Women’s Hospital in Boston who wrote an editorial accompanying the study but was not involved in the work.

In the event of systemic bacterial infection, the host will try to neutralize or kill the harmful bacteria—known as a resistance response—and mitigate the negative impacts of the infection without directly targeting the pathogens—through what’s called a tolerance response. The innate immune system is known to mediate resistance mechanisms to these infections partly by releasing the cytokine IL-22 from innate lymphoid ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky

    Anna Azvolinsky is a freelance science writer based in New York City.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide