Swamped by Sargassum: The New Normal for Caribbean Beaches

Scientists are pretty sure they know where the seaweed is coming from. Now they want to know why it’s here.

kerry grens
| 5 min read
sargassum

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

ABOVE: MATT SAVAGE

In 1989, marine biologist Brigitta van Tussenbroek arrived at National Auto­nomous University of Mexico in Puerto Morelos, a small village on the Caribbean coast about a 20-minute drive south of the resort city of Cancun. Those were austere days for the researcher. She spearfished for her dinners on the coral reef a short swim from her laboratory. Once, she drove across the Yucatan peninsula to the city of Merida to buy a coffee maker, but the water quality back in Puerto Morelos was so bad that the coffee came out like sludge. Research was a challenge, too—the lab’s air conditioning didn’t work and the microscopes would become full of mold. With no internet or phones onsite, “the only connection for us to the outer world was a radio station in Mexico City,” she recalls fondly.

Over the years, Puerto Morelos and its community began to modernize. The ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Published In

On Target July Issue The Scientist
July/August 2019

On Target

Researchers strive to make individualized medicine a reality

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio