Synthetic Sensors

Engineered circuits detect endogenous transcription factors to drive cellular outputs.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

SYNTHETIC CIRCUIT: In this example of a typical transducer, the genetic construct (top) includes an amplifier response element and a carefully positioned transcription factor response element upstream of a promoter that drives expression of a fusion gene (the combined effector of choice and an amplifier). In the presence of a specific endogenous transcription factor, which binds to the transcription factor response element, the fusion gene is expressed. Cleavage of the fusion protein releases the amplifier, which together with the transcription factor drives much stronger expression. The system is like a positive feedback loop, but neither the transcription factor nor the amplifier alone can drive strong expression—they need each other.
© LUCY READING-IKKANDA

Some synthetic biology applications use cells as mere hosts for engineered genetic circuits—for example, when cells act as factories for desired molecules. For other applications, however, researchers would like to integrate the synthetic circuits with the cell’s own pathways.

Such integrated systems could be used to sense particular molecules and induce appropriate responses. For instance, detection of a metastasis-inducing protein in a cancer cell might be used to trigger that cell’s suicide. “The concept is that these synthetic circuits will be able to read out bits and pieces of information from the cell and interpret them to make decisions and drive the cell in different directions,” says Yaakov “Kobi” Benenson of the Federal Institute of Technology, or ETH, in Zurich.

Benenson and colleagues have recently ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

December 2016

Traffic Cops

The structure and function of nuclear pores

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies