Targeting Leukemia with T Cells That Avoid Self-Destruction

Researchers found that naturally-occurring CD7-negative T cells avoid self-destruction and are good effectors in CAR T therapy for T cell blood cancers.

Written byDeanna MacNeil, PhD
| 3 min read
A full blood sample vial lying on top of a piece of paper that reads “Acute lymphoblastic leukemia”.
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Chimeric antigen receptor (CAR) T therapy is a cancer immunotherapy that relies on CARs, hybrid molecules of T cell receptors and antibodies. Scientists engineer patient-derived T cells to express CARs that kill cancer cells displaying molecules targeted by the CAR antibody domain. Although the FDA has approved CAR T therapy for B cell cancer treatment, it has been difficult for researchers to expand this therapeutic approach to other hematological malignancies. In T cell cancers such as T cell lymphoblastic leukemia (TLL), this challenge arises from fratricide, CAR T cell self-destruction.1–3

CAR T cells often share the same receptors as malignant T cells, which leads to fratricide. Paulina Velasquez, a clinician researcher at St. Jude Children’s Research Hospital, aims to bypass fratricide to target T cell malignancies with CAR T therapy. “We really wanted to develop a therapy for TLL, and it's always been something of interest because…how are you going to target T cells with T cells?” she explained.

The thing that encouraged us the most was the fact that when we gave tumor [cells to CD7-CARCD7- treated mice] again, they maintain beautiful antitumor activity, and that we don't see with many of our models.
- Paulina Velasquez, St. Jude Children’s Research Hospital.

In a study published in Blood, Velasquez’s team examined the fratricide resistance and antitumor activity of CAR T cells derived from a subset of T cells that naturally do not express the transmembrane protein CD7.1 CD7 is an appealing target for CAR T therapy due to its high and near-universal expression in T cell malignancies. However, to effectively target CD7-postive cancer cells, CAR T cells must not express CD7 themselves. Rather than complicate the CAR engineering process by disrupting CD7 with DNA editing or protein expression blockers, Velasquez’s team used CD7-negative T cells from healthy human donors.

After the researchers successfully selected CD7-negative T cells, they engineered the cells to express a CD7-CAR (CD7-CARCD7-). These engineered cells were resistant to fratricide and displayed potent antitumor activity both in culture and in a xenograft mouse model of T cell acute lymphoblastic leukemia (T-ALL).

CAR T therapies are typically engineered with bulk T cells, not a specific subset. To make sure the selected cells would kill cancer cells sufficiently, the researchers compared the CAR T function of the CD7-negative T cells with unselected bulk T cells. “You cannot compare what happens with the bulk T cells [expressing CD7-CAR]…because they just kill each other,” Velasquez explained. Instead, the researchers examined the antitumor potential of CD7-negative T cells that expressed a CD19-CAR, which displayed antitumor activity against CD19-positive blood cancer cells comparable to bulk CD19-CAR T cells. This reassured the researchers that the CAR T function of CD7-negative T cells was effective.

A full blood sample vial lying on top of a piece of paper that reads “Acute lymphoblastic leukemia”.

Additionally, from a clinical study of CD19-positive ALL, Velasquez’s team retrospectively examined a proportion of bulk CD19-CAR T cells with naturally low CD7 expression. Samples from patients that responded to CD19-CAR T therapy had a high proportion of T cells with low CD7 expression. “That is definitely a surprising aspect of this study,” said Marc Mansour, a clinical professor of pediatric haemato-oncology and an honorary consultant at University College London, who was not involved in the study. “When you normally make a CAR T cell product…you don't actually select for any subtype [of T cell]. The selection is essentially an in vivo, in patient selection for those CAR T cells that seem to persist the longest. And I don't think people had appreciated that it was this CD7-negative or CD7-low population that seems to actually persist the best,” he explained.

The poor outcomes associated with relapsed T-ALL underscore the need for new and improved treatment options.4 CAR T therapies help meet this need, and naturally-occurring CD7 negative T cells may be a solution to the challenge of targeting T cell malignancies with this strategy. “The thing that encouraged us the most was the fact that when we gave tumor [cells to CD7-CARCD7- treated mice] again, they maintain beautiful antitumor activity, and that we don't see with many of our models,” explained Velasquez. This suggests that CD7-CARCD7- T cells hold promise for patients with relapsing disease. While it may take time, the next steps for this research will be to move it into the clinical setting and provide a more effective treatment option for patients, which is direly needed to improve outcomes of relapsed T-ALL.

  1. A. Freiwan et al., “Engineering naturally occurring CD7 negative T cells for the immunotherapy of hematological malignancies,” Blood, 2021015020, online ahead of print, 2022.
  2. M. Gower, A.N. Tikhonova, “Avoiding fratricide: a T-ALL order,” Blood, 140:3-4, 2022.
  3. P.M. Maciocia et al., “Anti-CCR9 chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia,” Blood, 140:25-37, 2022.
  4. R. Pocock et al., “Current and emerging therapeutic approaches for T-cell acute lymphoblastic leukaemia,” Br J Haematol, 194:28-43, 2021.
rr

Related Topics

Meet the Author

  • Deanna MacNeil, PhD headshot

    Deanna earned their PhD from McGill University in 2020, studying the cellular biology of aging and cancer. In addition to a passion for telomere research, Deanna has a multidisciplinary academic background in biochemistry and a professional background in medical writing, specializing in instructional design and gamification for scientific knowledge translation. They first joined The Scientist's Creative Services team part time as an intern and then full time as an assistant science editor. Deanna is currently an associate science editor, applying their science communication enthusiasm and SEO skillset across a range of written and multimedia pieces, including supervising content creation and editing of The Scientist's Brush Up Summaries.

    View Full Profile
Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD

Products

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies