Temperature-Sensing Fat Cells

Researchers discover that unlike brown fat cells, white fat cells can directly sense cooling temperatures to switch on genes that control heat production.

Written byDan Cossins
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, REYTANBrown fat cells convert chemical energy into heat in response to cool temperatures—a form of thermogenesis that is induced indirectly via the sensory nervous system and a well-known signaling pathway. But certain white and beige fat cells can sense temperature directly to activate the suite of genes involved in heat generation, according to a study published today (July 1) in the Proceedings of the National Academy of Sciences.

“It’s a really interesting paper because it convincingly shows that there is a cell-autonomous mechanism for the induction of thermogenesis in fat cells that is not dependent on the sympathetic nervous system,” said Sven Enerbäck of the University of Gothenburg in Sweden, who was not involved in the study. “To my knowledge this is the first time anyone has reported that.”

“What this is means is that fat cells have a completely unstudied signaling system that ends up in activation of thermogenesis,” added Bruce Spiegelman, a cell biologist at Harvard Medical School and the Dana-Farber Cancer Institute in Boston, Massachusetts, who led the study. “This is mostly basic science, but from a biomedical perspective it will be interesting to find out what this unknown pathway ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH