The Birth of Optogenetics

An account of the path to realizing tools for controlling brain circuits with light.

| 12 min read

Register for free to listen to this article
Listen with Speechify
0:00
12:00
Share

Blue light hits a neuron engineered to express opsin molecules on the surface, opening a channel through which ions pass into the cell - activating the neuron.MIT MCGOVERN INSTITUTE, JULIE PRYOR, CHARLES JENNINGS, SPUTNIK ANIMATION, ED BOYDEN

For a few years now, I’ve taught a course at MIT called “Principles of Neuroengineering.” The idea of the class is to get students thinking about how to create neurotechnology innovations—new inventions that can solve outstanding scientific questions or address unmet clinical needs. Designing neurotechnologies is difficult because of the complex properties of the brain: its inaccessibility, heterogeneity, fragility, anatomical richness, and high speed of operation. To illustrate the process, I decided to write a case study about the birth and development of an innovation with which I have been intimately involved: optogenetics—a toolset of genetically encoded molecules that, when targeted to specific neurons in the brain, allow the activity of those neurons to be driven or silenced by light.

As an undergraduate at MIT, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Edward S. Boyden

    This person does not yet have a bio.

Published In

Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Artificial Inc. Logo

Artificial Inc. proof-of-concept data demonstrates platform capabilities with NVIDIA’s BioNeMo

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

Scientist holding a blood sample tube labeled Mycoplasma test in front of many other tubes containing patient samples

Accelerating Mycoplasma Testing for Targeted Therapy Development