The Challenges of Rare-Disease Research

With few resources and hesitant investors, basic scientists must rely on clinicians, patient advocates, and their own keen eye for biological connections.

Written byJyoti Madhusoodanan
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

© ISTOCK.COM/FANGXIANUOBecoming a mother changed Heather Etchevers’s life in more ways than she expected. After her daughter was born in 1999 with a rare skin condition known as giant congenital melanocytic nevus (CMN), the developmental biologist engaged with patient groups to understand the condition’s risks, which include myriad neurological disorders, malignancies, and cancer-like growths. But as the dearth of information about her daughter’s condition grew more apparent, she began to see a wealth of research potential. “I realized that things should be getting done that weren’t, and I had some special approaches that others weren’t doing or implementing at the time,” she says.

So Etchevers, who was using functional genomics to study malformations involving embryonic neural crest cells, decided to expand the focus of her research at the French National Institutes of Health (INSERM). But it would be another decade before any projects on CMN got off the ground. Because a rare disorder afflicts, by definition, fewer than 200,000 people in the U.S., patients are difficult to recruit without the help of a clinician, and clinical trials must be kept small so as to have any hope of filling them (giant CMN affects just 1 in 500,000 individuals). Funds are often scarce for research on conditions with such a small market, and the lack of existing literature and investigators working on the same disease can pose added professional ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery