Cancer-Specific Antigens Encoded in “Junk” DNA

Researchers found that allegedly noncoding genetic material carries the instructions for many peptides that may help harness the immune system to fight cancer.

Written byCarolyn Wilke
| 2 min read
T cells

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: TELLTALE TARGETS: T cells (one pictured above) can be trained to seek and destroy antigens specific to tumors.
MODIFIED FROM FLICKR, NIAID

The paper

C.M. Laumont et al., “Noncoding regions are the main source of targetable tumor-specific antigens,” Sci Transl Med, 10:eaau5516, 2019.

In pursuit of safe and effective cancer therapies, researchers have sought to identify antigens that are found on cancer cells but not on healthy cells. The quest for such tumor-specific antigens (TSAs) has largely focused on predicting mutated peptides from cancer cell genomes of individual patients.

This approach makes a research project out of each patient, says Claude Perreault, an immunologist at the University of Montreal. “I think you’re asking something that is impossible,” he adds. So Perreault and colleagues took a different tack. They used mass spectrometry to identify peptides on the surfaces of different types of cancer cells from mice and human patients. The search ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

The Scientist April 2019 Issue
April 2019

Will Car T Cells Smash Tumors?

New trials take the therapy beyond the blood

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies