The Ninefold Ring

Editor’s Choice in Structural Biology

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Infographic: Unraveling the ninefold ring
View full size JPG | PDF
CRISTINA LUIGGI; NINEFOLD RING COURTESY OF PIERRE GONCZY

For 50 years researchers have puzzled over how the animal cell manages to organize a critical component of cell division into a microtubule-rimmed cylinder with a distinctive nine-spoked cross-section. Now, Pierre Gönczy, at the Swiss Federal Institute of Technology, and colleagues have discovered that the three-dimensional structure of a key protein component directly specifies this unusual pattern.

Barrel-shaped organelles, the centrioles organize the spindle fibers that pull paired chromosomes apart during cell division. They also form the basal bodies of cilia and flagella in all eukaryotes possessing these appendages. Centriolar structure has long been a curiosity among researchers because nobody could figure out how the ninefold structure formed. It’s a “big question that has always perplexed people,” says Andrew Fry at the University of Leicester.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Richard P. Grant

    This person does not yet have a bio.

Published In

Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Artificial Inc. Logo

Artificial Inc. proof-of-concept data demonstrates platform capabilities with NVIDIA’s BioNeMo

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

Scientist holding a blood sample tube labeled Mycoplasma test in front of many other tubes containing patient samples

Accelerating Mycoplasma Testing for Targeted Therapy Development