The Ninefold Ring

Editor’s Choice in Structural Biology

Written byRichard P. Grant
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Infographic: Unraveling the ninefold ring
View full size JPG | PDF
CRISTINA LUIGGI; NINEFOLD RING COURTESY OF PIERRE GONCZY

For 50 years researchers have puzzled over how the animal cell manages to organize a critical component of cell division into a microtubule-rimmed cylinder with a distinctive nine-spoked cross-section. Now, Pierre Gönczy, at the Swiss Federal Institute of Technology, and colleagues have discovered that the three-dimensional structure of a key protein component directly specifies this unusual pattern.

Barrel-shaped organelles, the centrioles organize the spindle fibers that pull paired chromosomes apart during cell division. They also form the basal bodies of cilia and flagella in all eukaryotes possessing these appendages. Centriolar structure has long been a curiosity among researchers because nobody could figure out how the ninefold structure formed. It’s a “big question that has always perplexed people,” says Andrew Fry at the University of Leicester.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies