Time-Lapse on the Cheap

A PhD student jury-rigs a microscopy system for high-throughput cell motility assays.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

LOOK AT 'EM GO: The LOCOMOTIS microscopy rig includes three inexpensive microscopes, each mounted below a sample in a dish. Software records data coming in from the three scopes simultaneously. A heated cable in the sample chamber allows for temperature manipulation.© GEORGE RETSECK

Adam Lynch, a doctoral student at Brunel University London, studies the effects of waterway pollutants on the physiology of the freshwater snail Biomphalaria glabrata. As part of his thesis, he planned to observe—using time-lapse imaging—how a variety of chemicals affect the motility of the snail’s immune cells.

To perform such imaging, researchers traditionally placed a cell culture dish on an inverted microscope and took photos with a software-driven digital camera at regular time intervals. To look at several experimental conditions in parallel—which Lynch hoped to do—would thus require several microscopes, or an automated stage fitted to one microscope that enabled precision movements of a multiwell culture dish.

Lynch did not have access to either, but he did have access to the Internet. There he bought ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems