Tiny Animals May Drive Motion in the Ocean

The collective swimming of brine shrimp markedly impacts water currents, a study shows.

Written byMolly Sharlach
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Migrating brine shrimp (white) generate swirling eddies, as visualized with a high-speed camera using microscopic tracer particles (yellow). CALTECH, MONICA WILHELMUS AND JOHN DABIRI

Diminutive drifting animals such as krill and copepods make up a large proportion of the biomass in the world’s oceans, but their effects on ocean circulation patterns are not well understood. A laboratory study of brine shrimp revealed that their swimming could add as much energy to ocean water as winds or tides. The findings, reported this week (September 30) in Physics of Fluids, could inform more accurate climate change predictions.

Although brine shrimp typically live in salty lakes, they exhibit daily migration patterns similar to zooplankton in the ocean. At dusk, large groups of animals swim up to the water’s surface, where they feed on smaller photosynthetic plankton and evade predators in the dark. They retreat to deeper waters at sunrise, sometimes traveling hundreds ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH