To Pee or Not to Pee

Have researchers found the seat of urination control in a primitive brain region?

Written byRichard P. Grant
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ANDRZEJ KRAUZE

Social mammals—for example, rats and humans—learn to control necessary bodily functions, such as urination (a.k.a. micturition), to keep their living quarters clean or to avoid social faux pas. As a bladder fills with fluid, stretch receptors send nerve impulses to the spinal column, signaling smooth muscle in the bladder wall to contract—a process known as the micturition reflex. Ordinarily the brain overrides the impulse to urinate until an appropriate opportunity arises, but the signaling loop can fail, leading to incontinence.

It is well known that the neurotransmitter gamma-aminobutyric acid (GABA) is involved in micturition, but exactly which part of the brain controls the micturition response has been hard to pin down. Searching for the brain’s urination control switch, University of Birmingham’s Thelma Lovick took ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH