Toward Targeted Therapies for Autoimmune Disorders

Training the immune system to cease fire on native tissues could improve outcomes for autoimmune patients, but clinical progress has been slow.

Written byLawrence Steinman
| 11 min read

Register for free to listen to this article
Listen with Speechify
0:00
11:00
Share

AUTOIMMUNE TARGETS: This false-color transmission electron micrograph (TEM) displays a slice through a mammalian pancreatic islet cell, the target of an aberrant immune response in type 1 diabetes patients. The red spots in white spaces are membrane-bound secretory granules containing insulin and other hormones to be excreted into the blood. (Nucleus, upper right.)© SPL/SCIENCE SOURCE

History often repeats itself. More than 100 years ago, one of the world’s leading immunologists, Nobel Laureate Paul Ehrlich, doubted the very existence of autoimmunity, in which the immune system begins to attack healthy tissues. Envisioning a nightmare scenario where the body turns against itself, Ehrlich reasoned that it would be quite improbable. His skepticism regarding this phenomenon, which he termed “horror autotoxicus” (literally, “the horror of self-toxicity”), delayed the acceptance of this concept for another half century—even in the face of compelling clinical examples of immunity gone haywire.

A century of basic research later, scientists now accept that autoimmunity does in fact exist, with devastating consequences. More than 20 autoimmune diseases have been identified; these disorders affect every organ in the body and afflict ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

June 2016

Found in Translation

Some supposedly nonfunctional RNA molecules encode functional peptides

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies