Tracing Ebola’s Evolution

Two independent teams examine the migration and evolution of the virus throughout the ongoing outbreak in West Africa.

Written byAnna Azvolinsky
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Map showing spread of Ebola based on phylogenetic analysis of lineage A from March 2014 and B starting in May/June 2014PUBLIC HEALTH ENGLAND; MILES CARROLL, MICHAEL ELMORE (WITH PERMISSION FROM NATURE PUBLISHING GROUP)

The ongoing Ebola outbreak is the largest on record. The World Health Organization (WHO) this week (June 17) reported 27,305 confirmed cases, including 11,169 deaths. In an effort to better understand the deadly virus, scientists have mapped the transmission and evolution of Ebola at the epicenter of the 2014 epidemic (Guinea, Liberia, and Sierra Leone), providing a detailed look at the virus throughout the first nine months of the outbreak. Together with previously published Ebola sequencing analyses, the results of two independent studies published this week could help health officials better prepare for and control future outbreaks.

In a study published in Nature this week (June 17), Miles Carroll of Public Health England and his colleagues at the European Mobile Lab and elsewhere reported 179 ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies