Tracking Zika’s Evolution

Sequence analysis of 41 viral strains reveals more than a half-century of change.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Representation of Zika virusFLICKR, NIH IMAGE GALLERYComparing the sequences of 30 strains of Zika virus isolated from humans, 10 from mosquitoes, and one from monkeys has revealed significant evolutionary change over the past 70 years, according to a study published today (April 15) in Cell Host & Microbe. Specifically, the sequences of the viral strains showed notable divergence between the Asian and African lineages and suggest that modern Zika virus strains derived from the Asian lineage, as they are more similar to the Malaysian/1966 strain than the Nigerian/1968 strain. Additionally, the gene for the pre-membrane precursor protein has very high variability among the Zika strains examined, which modeling work suggests may affect the protein’s structure.

“We believe these changes may, at least partially, explain why the virus has demonstrated the capacity to spread exponentially in the human population in the Americas,” study coauthor Genhong Cheng of the University of California, Los Angeles, said in a press release. “These changes could enable the virus to replicate more efficiently, invade new tissues that provide protective niches for viral propagation, or evade the immune system, leading to viral persistence.”

But it is not possible to directly test whether these mutations affect the virus’s spread in humans, virologist Vincent Racaniello noted on his blog. “It’s easy to blame mutations in the viral genome for novel patterns of transmission or pathogenesis,” he wrote. “There is no reason to assume that such changes influence virulence, disease ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Faster Fluid Measurements for Formulation Development

Meet Honeybun and Breeze Through Viscometry in Formulation Development

Unchained Labs
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo

Products

Metrion Biosciences Logo

Metrion Biosciences launches NaV1.9 high-throughput screening assay to strengthen screening portfolio and advance research on new medicines for pain

Biotium Logo

Biotium Unveils New Assay Kit with Exceptional RNase Detection Sensitivity

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo