Tracking Zika’s Evolution

Sequence analysis of 41 viral strains reveals more than a half-century of change.

Written byJef Akst
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Representation of Zika virusFLICKR, NIH IMAGE GALLERYComparing the sequences of 30 strains of Zika virus isolated from humans, 10 from mosquitoes, and one from monkeys has revealed significant evolutionary change over the past 70 years, according to a study published today (April 15) in Cell Host & Microbe. Specifically, the sequences of the viral strains showed notable divergence between the Asian and African lineages and suggest that modern Zika virus strains derived from the Asian lineage, as they are more similar to the Malaysian/1966 strain than the Nigerian/1968 strain. Additionally, the gene for the pre-membrane precursor protein has very high variability among the Zika strains examined, which modeling work suggests may affect the protein’s structure.

“We believe these changes may, at least partially, explain why the virus has demonstrated the capacity to spread exponentially in the human population in the Americas,” study coauthor Genhong Cheng of the University of California, Los Angeles, said in a press release. “These changes could enable the virus to replicate more efficiently, invade new tissues that provide protective niches for viral propagation, or evade the immune system, leading to viral persistence.”

But it is not possible to directly test whether these mutations affect the virus’s spread in humans, virologist Vincent Racaniello noted on his blog. “It’s easy to blame mutations in the viral genome for novel patterns of transmission or pathogenesis,” he wrote. “There is no reason to assume that such changes influence virulence, disease ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery