Tracking Zika’s Evolution

Sequence analysis of 41 viral strains reveals more than a half-century of change.

Written byJef Akst
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Representation of Zika virusFLICKR, NIH IMAGE GALLERYComparing the sequences of 30 strains of Zika virus isolated from humans, 10 from mosquitoes, and one from monkeys has revealed significant evolutionary change over the past 70 years, according to a study published today (April 15) in Cell Host & Microbe. Specifically, the sequences of the viral strains showed notable divergence between the Asian and African lineages and suggest that modern Zika virus strains derived from the Asian lineage, as they are more similar to the Malaysian/1966 strain than the Nigerian/1968 strain. Additionally, the gene for the pre-membrane precursor protein has very high variability among the Zika strains examined, which modeling work suggests may affect the protein’s structure.

“We believe these changes may, at least partially, explain why the virus has demonstrated the capacity to spread exponentially in the human population in the Americas,” study coauthor Genhong Cheng of the University of California, Los Angeles, said in a press release. “These changes could enable the virus to replicate more efficiently, invade new tissues that provide protective niches for viral propagation, or evade the immune system, leading to viral persistence.”

But it is not possible to directly test whether these mutations affect the virus’s spread in humans, virologist Vincent Racaniello noted on his blog. “It’s easy to blame mutations in the viral genome for novel patterns of transmission or pathogenesis,” he wrote. “There is no reason to assume that such changes influence virulence, disease ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Golden geometric pattern on a blue background, symbolizing the precision, consistency, and technique essential to effective pipetting.

Best Practices for Precise Pipetting

Integra Logo
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel