Turning Back the Brain’s Clock

The brain’s ability to make new neural connections can be restored in mice by blocking a protein that normally acts as a natural brake on neuroplasticity.

head shot of blond woman wearing glasses
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Fluorescently-labeled neuron in cortex from mouse with amblyopia treated with soluble PirB. DR. MAJA DJURISIC AND RICHIE SAPP, DEPARTMENT OF BIOLOGY, STANFORD UNIVERSITYThe time window for the brain to develop optimal connections based on learning and experience is relatively short-lived, occurring prior to adulthood. But this neuroplasticity can be restarted in the visual cortex of adult mice, according to the results of a study published today (October 15) in Science Translational Medicine. Directly inhibiting the activity of a protein, known to put a brake on neural plasticity early during post-natal development, resulted in growth of new neural synapses and restored eye sight in adult animals with so-called “lazy eye.”

“There is a lot of interest in the ‘critical period’ of development when the brain is plastic and undergoes a lot of changes and learning,” said Christiaan Levelt, who studies the biology of visual plasticity at the Netherlands Institute for Neuroscience in Amsterdam and was not involved in this work. “This study shows that, in an adult animal, you can re-open this critical period window and get enhanced plasticity.”

“At its heart, this is about understanding why it gets harder to learn new things as we get older and whether this is something that we can reverse if we knew the right molecules to target, by either adding them back or by suppressing them,” said study author David Bochner, who just completed his PhD research ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky

    Anna Azvolinsky is a freelance science writer based in New York City.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
Explore polypharmacology’s beneficial role in target-based drug discovery

Embracing Polypharmacology for Multipurpose Drug Targeting

Fortis Life Sciences
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

The Scientist Placeholder Image

Gilead’s Capsid Revolution Meets Our Capsid Solutions: Sino Biological – Engineering the Tools to Outsmart HIV

Stirling Ultracold

Meet the Upright ULT Built for Faster Recovery - Stirling VAULT100™

Stirling Ultracold logo
Chemidoc

ChemiDoc Go Imaging System ​

Bio-Rad
The Scientist Placeholder Image

Evotec Announces Key Progress in Neuroscience Collaboration with Bristol Myers Squibb