Unique Antibodies Open Path Toward New HIV Vaccines

A family of broadly neutralizing antibodies from a chronically infected donor provides a schematic for designing vaccines and treatments that target multiple strains of the virus.

Written byAmanda B. Keener
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

DH511.2_K3, an engineered hybrid antibody L.D. WILLIAMS ET AL., SCI. IMMUNOL. 2, EAAL2200 (2017)Thanks to its diversity and tendency to mutate, HIV is a notoriously problematic vaccine target. Researchers have found hope in the existence of rare, naturally occurring antibodies that can neutralize multiple HIV strains, called broadly neutralizing antibodies. In a study published in Science Immunology today (January 27), a group of researchers based at Duke University in Durham, North Carolina, described a unique lineage of broadly neutralizing antibodies from a chronically infected donor’s B cells and plasma that can bind a hard-to-access part of the virus.

“It is a breakthrough because most of us thought that we wouldn’t be able to develop these antibodies in the first place,” said Nelson Michael, who directs the HIV research program at the Walter Reed Army Institute of Research in Silver Spring, Maryland, and was not involved in the work. Although there are other broadly neutralizing antibodies that bind the same region of the HIV envelope protein, Michael said none of them bind as close to the virus’s plasma membrane—an ideal position to block crucial steps of the viral life cycle—as those described in the present study. The virus’s plasma membrane resembles parts of human cells and, to protect itself from autoimmunity, the body usually deletes B cells that makes antibodies against itself through a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies