Using Machine Learning to Battle Antibiotic Resistance

Researchers are using artificial intelligence to identify known and novel resistance genes.

Written byAmber Dance
| 8 min read
e coli

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

ABOVE: © istock.com, luismmolina

Should you be so unlucky as to wind up in the hospital with a drug-resistant bacterial infection, doctors will need to figure out which antimicrobial drug has the best chance of killing your particular pathogen. With antibiotic resistance on the rise—and predicted to kill 10 million people per year by 2050—it’s not always an easy choice.

It would help clinicians to be able to mine your superbug’s genome for DNA sequences that indicate susceptibility or resistance to antibiotics. As a step toward that goal, bioinformaticians are tapping artificial intelligence to identify the most relevant sequences. They’re making progress, thanks to databases stuffed with thousands of genomes from different strains of pathogenic bacteria, along with corresponding data on whether those strains were susceptible or resistant to dozens of antibiotics.

Some researchers are training machine learning algorithms to identify known drug resistance genes in new strains of a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Amber Dance is an award-winning freelance science journalist based in Southern California. After earning a doctorate in biology, she re-trained in journalism as a way to engage her broad interest in science and share her enthusiasm with readers. She mainly writes about life sciences, but enjoys getting out of her comfort zone on occasion.

    View Full Profile

Published In

May 2019 The Scientist Issue
May 2019

AI Tackles Biology

How machine learning will revolutionize science and medicine.

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo