Using Mimics to Get Around Antibodies’ Limitations

Synthetic and natural alternatives to traditional antibodies offer more control, specificity, and reproducibility.

Written byDevika G. Bansal
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

Palm Clasp: DARPins, or designed ankyrin repeat proteins, consist of an N-capping repeat (green ribbon), many internal repeats whose number can be freely chosen (three shown here) (dark blue ribbon), and a C-capping repeat (cyan ribbon). The molecular model shows a classic DARPin library design. ANNU REV PHARMACOL TOXICOL, 55:489–511, 2015Antibodies are the immune system’s foot soldiers, the first line of defense against foreign invaders. With their unique arms that bind only to specific ligands, antibodies screen thousands of proteins to find the one that clasps perfectly.

This bit of biology also makes antibodies a powerful tool for detecting and capturing proteins in the lab. But they have some significant drawbacks. For one thing, it takes between six months and a year to develop lab-ready antibodies, and the process, which was developed in the 1970s and ’80s, often involves using animal hosts, such as rabbits, to generate the molecules. Also, antibodies’ unwieldy structure of light and heavy chains and their large size—most are about 150 kDa—makes it hard to fuse them with target proteins, or to use them inside live cells. What’s more, antibodies often cannot be produced as genetically encoded reagents within cells of interest because they have disulfide bonds that fail to form in the reducing environment of the cytoplasm.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

June 2018

Microbial Treasure

Newly discovered archaea reveal bizarre biology

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH