Using Mimics to Get Around Antibodies’ Limitations

Synthetic and natural alternatives to traditional antibodies offer more control, specificity, and reproducibility.

Written byDevika G. Bansal
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

Palm Clasp: DARPins, or designed ankyrin repeat proteins, consist of an N-capping repeat (green ribbon), many internal repeats whose number can be freely chosen (three shown here) (dark blue ribbon), and a C-capping repeat (cyan ribbon). The molecular model shows a classic DARPin library design. ANNU REV PHARMACOL TOXICOL, 55:489–511, 2015Antibodies are the immune system’s foot soldiers, the first line of defense against foreign invaders. With their unique arms that bind only to specific ligands, antibodies screen thousands of proteins to find the one that clasps perfectly.

This bit of biology also makes antibodies a powerful tool for detecting and capturing proteins in the lab. But they have some significant drawbacks. For one thing, it takes between six months and a year to develop lab-ready antibodies, and the process, which was developed in the 1970s and ’80s, often involves using animal hosts, such as rabbits, to generate the molecules. Also, antibodies’ unwieldy structure of light and heavy chains and their large size—most are about 150 kDa—makes it hard to fuse them with target proteins, or to use them inside live cells. What’s more, antibodies often cannot be produced as genetically encoded reagents within cells of interest because they have disulfide bonds that fail to form in the reducing environment of the cytoplasm.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

June 2018

Microbial Treasure

Newly discovered archaea reveal bizarre biology

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies