Viruses Affect Cell Reprogramming

Viral vectors used to carry transcription factors that de-differentiate cells into a stem-cell-like state are themselves a key factor in efficient reprogramming.

Written bySabrina Richards
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Wikimedia, Nissim Benvenisty.Triggering a pathway designed to sense viral infection can help boost generation of induced pluripotent stem cells (iPSCs), suggesting that the viruses used by many reprogramming methods influence the fate of the cell. The new research, published today (October 25) in Cell, suggests that targeting the pathway without using viruses could avoid the risk that the viruses’ genetic material will integrate into the genome and cause the cell to become cancerous—a common concern for iPSC therapies.

“This is something everyone else missed before,” said Gioacchino Natoli, an experimental oncologist at the European Institute of Oncology in Italy who was not involved in the study. An innate immune response to the viral vector is clearly needed for reprogramming, and “stimulating this leads to reprogrammed cells without exogenous DNA being integrated,” he added.

Six years ago, Shinya Yamanaka identified four key transcription factors, that, when transduced into cells using a viral vector, caused cells to de-differentiate into a stem-cell-like state, capable of generating a multiplicity of human tissues. He shared this year’s Nobel Prize in Medicine for the achievement, which has already made significant contributions to biomedical research. But there was a major hurdle on the path to clinical use: the strategy relies ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies