Vive la Différence

Measuring how individual cells differ from each other will enhance the predictive power of biology.

Written byH. Steven Wiley
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A cluster of cerebellar granule cells grown in culture WELLCOME IMAGES

Science is all about prediction. Its power lies in the ability to make highly specific forecasts about the world. The traditional “hard” sciences, such as chemistry and physics, use mathematics as the basis of their predictive power. Biology sometimes uses math to predict small-scale phenomena, but the complexity of cells, tissues, and organisms does not lend itself to easy capture by equations.

Systems biologists have been struggling to develop new mathematical and computational approaches to begin moving biology from a mostly descriptive to a predictive science. To be most useful, these models need to tell us not only why different types of cells can behave in much the same way, but also why seemingly identical cells can behave so differently.

Cell biologists typically want to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH