Photo © JIM CORNFIELDViviana Gradinaru spent her early childhood in a village of fewer than 100 subsistence farmers tucked into the countryside of northeastern Romania. Her family stressed the importance of education, whether in a classroom or in the hills outside her grandparents’ tiny village. “It was extremely enlightening in terms of freedom of play,” she recalls. Gradinaru’s interest in the natural world led her to study physics at the University of Bucharest, but she came to realize that she’d have more opportunities for experimentation abroad. So she transferred to Caltech in her second year to study biophysics in a neuroscience lab.
For graduate school Gradinaru joined the lab of Stanford University’s Karl Deisseroth because of his interest in developing neuroscience tools. “I left Caltech with this need to be able to control cell types in intact tissue,” she says. Deisseroth’s lab was beginning to develop optogenetics, and Gradinaru jumped on board to use the technique to figure out how deep-brain stimulation (DBS) benefits Parkinson’s patients.
Along the way, Gradinaru worked on a problem with trying to inhibit neuronal activity: the opsins, light-sensitive proteins that are the workhorses of optogenetics, would sometimes clump and damage cells. Though it was only a year-long detour en route to her PhD, the solution Gradinaru came up with is now fundamental to optogenetics, says Deisseroth. “She found a short amino acid ...