Why Women Lose Fertility

Mating behavior is an unlikely driver of women's reproductive aging.

| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

© JOHN SLATER/CULTURA/CORBISThe late statistician George E.P. Box, who famously wrote that “all models are wrong, but some are useful,” also wrote that “science is a means whereby learning is achieved, not by mere theoretical speculation on the one hand, nor by the undirected accumulation of practical facts on the other, but rather by a motivated iteration between theory and practice.”

Richard Morton, Jon Stone, and Rama Singh at McMaster University in Ontario, in their recent article in PLOS Computational Biology (9:e1003092, 2013), present a mathematical model exploring whether menopause could evolve as a result of male preferences for younger mates. Their model imagines that early in human evolutionary history, women remained fertile well into their 70s and even 80s, but men had a strong fixed preference for mating with younger women. The older women thus remained mateless, therefore gaining little fitness by retaining fertility, and as a result, accumulated mutations that reduced their ability to reproduce later in life. The central assumptions of this model, unfortunately, appear to be false. In Box’s framework, Morton and his colleagues have excelled at theoretical speculation, but seem to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Daniel Levitis

    This person does not yet have a bio.
  • Alan Cohen

    This person does not yet have a bio.

Published In

Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Conceptual 3D image of DNA on a blue background.

Understanding the Nuts and Bolts of qPCR Assay Controls 

Bio-Rad
Takara Bio

Takara Bio USA Holdings, Inc. announces the acquisition of Curio Bioscience, adding spatial biology to its broad portfolio of single-cell omics solutions

Sapio Sciences

Sapio Sciences Announces Enhanced Capabilities for Chemistry, Immunogenicity, GMP and Molecular Biology

Biotium Logo

Biotium Unveils the Most Sensitive Stains for DNA or RNA with New EMBER™ Ultra Agarose Gel Kits