Will GM Insects Help Stop Disease?

A variety of genetic strategies to counter insect-borne diseases are close to maturity.

Written bySabrina Richards
| 4 min read
mosquito gm insect

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Insects transmit some of the world’s most debilitating pathogens, including those responsible for malaria, dengue fever, Chagas disease, and sleeping sickness. So, naturally, the best way to fight these life-threatening diseases is at their source. Historically, malaria and dengue control strategies have incorporated insect population control using insecticides, but in recent years, researchers have turned to genetic engineering. By developing mosquitoes that don’t carry such pathogens, researchers hope to stop disease spread in its tracks.

After many years of hopeful development, such genetically modified mosquitoes might finally be close to proving their worth. Field tests of genetically-sterilized mosquitoes, targeted at dengue-carrying species, are demonstrating encouraging suppression of mosquito populations, while a variety of genetically manipulated malaria- or dengue-resistant mosquitoes are nearing their chance at tackling mosquito-borne infections outside the laboratory.

Researchers creating genetically modified (GM) insects generally have one of two goals. “I call them the ‘bite, no-bite’ strategies,” said ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH