Worms’ Magnetic Sense Questioned

Unsuccessful attempts to reproduce the results of a 2015 study reporting that C. elegans orient themselves by Earth’s magnetic field spark debate among researchers.

Written byAbby Olena, PhD
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

A contrast-enhanced image of an agar plate showing the tracks that worms carved on the surface while migrating towards a magnet placed beneath the solid circle (top). The control circle (bottom) is in dashed lines. Worms began in the middle of the plate.ANDRES VIDAL-GADEAScientists have known for decades that many animals—including birds and sea turtles—use Earth’s magnetic field to navigate over long distances, but understanding how they do so remains a mystery.

In 2015, a group from the University of Texas at Austin reported in eLife that a tiny nematode worm, Caenorhabditis elegans, orients to Earth’s magnetic field using a specific pair of neurons. The findings raised the possibility that C. elegans might be an appropriate model system to dig deeper into how animals sense magnetic fields. But earlier this month (April 13) in a comment published in eLife, researchers from the Research Institute of Molecular Pathology in Austria describe unsuccessful attempts to reproduce the results of the 2015 study.

“Studying animal magnetoreception is really difficult,” says Miriam Goodman, a sensory biologist at Stanford University who is not affiliated with either group. “I think that we will remain in a situation where we have passionate disagreement until ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo