Yeast–Made Opioid Progresses

Scientists are one step closer to coaxing engineered yeast to produce morphine from a simple sugar.

Written byTracy Vence
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Right: yeast cells producing the yellow beet pigment betaxanthin, which researchers used to identify key enzymes in the production of BIAs—metabolites in the poppy plant that could lead to morphine, antibiotics, and other pharmaceuticals. WILLIAM DELOACHEBuilding on previous work toward yeast–based opioid production, a team led by investigators at the University of California, Berkeley, has engineered a strain of yeast (Saccharomyces cerevisiae) that can convert glucose into a benzylisoquinoline alkaloid (BIA) intermediate from which morphine can be derived. The results, published in Nature Chemical Biology this week (May 18), prompted a trio of scientists who were not involved in the work to urge the research community to “regulate ‘home-brew’ opiates” in a Nature commentary.

“The advance marks the first time that scientists have artificially reproduced the entire chemical pathway that takes place in poppy plants to produce morphine in the wild,” The Guardian reported. Researchers had previously described the successful reproduction of parts of this morphine-production pathway. As Science noted, “efforts to insert the BIA pathway into yeast have been under way for the better part of a decade.”

“What you really want to do from a fermentation perspective is to be able to feed the yeast glucose, which is a cheap sugar source, and have the yeast do all the chemical steps required downstream to make your target therapeutic drug,” study coauthor John Dueber of Berkeley said in a statement. “With our study, all the steps have been ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo