Zebrafish Embryos Survive Deep Freeze and Quick Thaw

In a first, scientists reanimate the fish using embedded gold nanoparticles that heat up cells by absorbing laser light.

Written byAshley Yeager
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Cryoprotectant and gold nanoparticles injected into zebrafish embryos allowed them to be frozen and reanimated. It is the first time this has been done with zebrafish embryos, scientists say.FULL VIDEO ON YOUTUBE, UNIVERSITY OF MINNESOTA/SMITHSONIAN CONSERVATION BIOLOGY INSTITUTEZebrafish embryos have for the first time been frozen, thawed, and brought back to life. The feat, described July 13 in ACS Nano, could help to store frozen fish germ cells and embryos and has implications for biomedical research and also replenishing biodiversity in the oceans.

Researchers have been working on cryopreservation of zebrafish embryos for decades. It’s never been done before. “The fact that we got any viability at all was surprising,” says study coauthor John Bischof of the University of Minnesota.

Over the past 60 years, scientists have had success preserving the sex cells and embryos of humans, cattle, mice, and many other animals. Trying to freeze and thaw fish embryos, however, has been more difficult because of their size and structure. The embryos are relatively large, bigger than a human egg. Fish embryos also have different compartments that freeze and thaw at different speeds. That can lead to the development of ice particles, which can damage the embryo.

Building on work by other scientists, Bischof and colleagues tweaked ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies